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Abstract

We present an introductory discussion of deep-inelastic lepton-proton scattering as a

means to probe the substructure of the proton. A résumé of QCD is given, emphasizing

the running of the coupling constant and the DGLAP evolution equations for the parton

densities. The determination of parton distributions is discussed and their importance

for predictions of processes at the LHC is emphasized. Going beyond the pure DGLAP

regime, we briefly discuss the behaviour of parton densities at low x, and the evidence for

non-linear absorptive contributions.

1 Deep inelastic scattering (DIS) introduced

High energy electron scattering is an ideal probe of the structure of a composite object. For

instance, consider the scattering of a beam of electrons on a nuclear target of mass MN . The

scattering occurs via the exchange of a virtual photon, see Fig. 1. Since it is virtual, the photon

is not on its mass shell. That is, its 4-momentum q does not satisfy q2 = 0. On the other hand,

a real (ingoing or outgoing) particle or system must be on its mass shell. So the invariant mass

W of the outgoing system in Fig. 1 satisfies

W 2 = (pN + q)2 = M2
N + 2pN · q + q2, (1)



Figure 1: Electron-nucleus scattering, where pN and q are the 4-momenta of the incoming

nucleus and virtual photon respectively, and W is the invariant mass of the outgoing hadronic

system. The lower three diagrams are a schematic illustration of the cross section for electron-

nucleus scattering, eN → eX, plotted as a function of the scaling variable xN = Q2/2pN · q at

three different values of Q2. In the lowest plot the wavelength λ of the virtual photon probe

is much less that the nuclear radius RN , and the photon probes a constituent proton of the

nucleus.
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where MN and pN are the mass and 4-momentum of the nucleus. It follows that q2 is negative.

So we define Q2 ≡ −q2.

The wavelength of the probing photon λ ∼ 1/Q. Let us follow what happens as we increase

the electron energy, so that the photon probe has a shorter and shorter wavelength λ. We begin

with λ ≫ RN , where RN is the radius of the nucleus. In this case the photon sees a “point”

nucleus and we have elastic electron-nucleus scattering with W = MN . Thus, from (1),

xN ≡ Q2

2pN · q =

(

Q2

2MNν

)

lab.

= 1, (2)

where ν is the energy loss of the electron. The expression in the laboratory frame shows

immediately that Q2 ≡ −q2 is positive. We sketch the corresponding elastic peak at xN = 1 in

the first of the three plots of Fig. 1. If we increase Q until λ ∼ RN then the outgoing system

may be an excited nuclear state. Now W > MN and xN < 1, as shown in Fig. 1.

Finally, if λ ≪ RN , the photon may probe deep within the nucleus. The nucleus is broken

up. We have deep (Q2 ≫ M2
N ) inelastic (W 2 ≫ M2

N) electron-nucleus scattering. Indeed,

the electron may scatter off a constituent proton of the nucleus. In terms of xN , the resulting

electron-proton elastic scattering peak will occur at

xN =
M

MN

(

Q2

2Mν

)

lab.

=
1

A
, (3)

but will be smeared out due to the Fermi momentum of the proton bound in the nucleus, see

Fig. 1. M is the proton mass and A is the number of nucleons in the nucleus. The area under

the Fermi-smeared peak gives the number of protons in the nucleus, and hence the position

of the peak determines the number of neutrons. The reduction of the eN elastic peak, with

increasing Q2, reflects the small chance of the A − 1 spectator nucleons all happening to be

moving in the direction of the outgoing struck proton and reforming the original nucleus.

Let us increase Q2 even further. Suppose that protons are made up of three point-like

quarks, then high-energy electron-proton scattering will simply be a replay of electron-nucleus

scattering one layer of substructure down. We have an analogous sequence of diagrams to those

shown in Fig. 1, but with RN replaced by the proton radius R. Also the scattering probabilities

should now be plotted in terms of

x =

(

Q2

2p · q

)

, (4)

where p is the 4-momentum of the proton. The continuous curve in Fig. 2 is the analogue of

the lowest plot in Fig. 1. It shows the elastic eq-scattering peak Fermi-smeared about x = 1/3,

together with traces of the elastic ep peak at x ∼ 1. If there were no further substructure, this

curve would persist as Q2 increases. We would have (Bjorken) scaling; the scattering depends

only on the ratio x = Q2/2p · q, and not on the two variables, Q2 and p · q, individually. x is

known as the Bjorken scaling variable.
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Figure 2: Schematic illustration of electron-proton scattering as a function of the Bjorken

scaling variable x ≡ Q2/2p · q. The proton structure function F2 is defined in the next section.

The hadrons N∗ are excited states of the proton. If the proton consisted of just three valence

point-like quarks the result would be the continuous curve independent of Q2. However with

increased resolution (higher Q2) the photon may probe one of a pair of sea quarks produced

from a radiated gluon via g → qq̄. Indeed, as Q2 increases, the proton appears to have more

and more constituents, which all must share its momentum, and so the distribution skews more

and more towards small x. This trend from the continuous to the dashed curve is characteristic

of QCD scaling violations.

In summary, as Q2 increases, we first have ‘nuclear’ scaling with a peak at xN = 1, then

violations of scaling, following by ‘proton’ scaling with a peak at x ∼ 1, followed by violations,

and then ‘quark’ scaling with a peak at x ∼ 1/3. If the quarks themselves had substructure then,

as Q2 increases even further, we would enter yet again a region of scaling violations followed

by another onset of scaling. But history does not seem to repeat itself. Scaling violations are

observed but these reflect the field theory of quarks and gluons (QCD) with coupling αs. The

photon “sees” the proton made up of the three quarks (called valence quarks) and an arbitrary

number of qq̄ pairs (made up of sea quarks). The sea quarks originate from gluons, via g → qq̄,

themselves radiated from quarks, see the sketch on the right of Fig. 2. Suppose the photon

probes a quark carrying a fraction ξ of the proton’s momentum p. Then for essentially massless

quarks we have

(ξp + q)2 = m2
q ≃ 0, that is ξ ≃ Q2/2p · q = x. (5)

Consequently as Q2 increases, more and more partons (that is quarks and gluons) become

evident which have to share the momentum of the parent proton. Each carries a smaller

fraction ξ = x of the momentum, and we get QCD scaling violations (which, as we will see,

have the form αsP log(Q2/µ2)) as indicated by the dashed line in Fig. 2. On hearing this for

the first time from Wilczek, one of the discoverers of QCD, a famous experimentalist said
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Figure 3: Neutral- and charged-current DIS mediated by (γ, Z) and W exchange respectively.

“You expect us to measure logarithms? Not in your lifetime, young man”. Yet today the

high precision DIS data from HERA and earlier fixed-target experiments show exactly the

QCD logarithmic scaling violations predicted. A collection of plots (which show the scaling

violations) compiled from these deep inelastic ep scattering data can be found in Section 16 of

the Review of Particle Properties[1]. Introductory discussions of DIS can be found, for example,

in Refs.[2, 3, 4, 5, 6, 7, 8].

2 The DIS observables: the structure functions

The DIS process, ep → eX, is shown in Fig. 3(a). We talk of the neutral current (NC) DIS

mediated by γ and Z exchange. We also have charged-current (CC) DIS mediated by W

exchange, shown in the second diagram. Recall that by “deep” we mean Q2 ≫ M2 and by

“inelastic” we mean W 2 = (p + q)2 ≫ M2.

The NC cross section is of the form

dσ

dxdy
= xs

dσ

dxdQ2
=

2πyα2

Q4

∑

j

ηjL
µν
j W j

µν , (6)

where the sum is over j = γ, Z and γZ representing photon and Z-boson exchange and the

interference between them; and where

ηγ = 1, ηγZ =

(

GF M2
Z

2
√

2πα

)(

Q2

Q2 + M2
Z

)

, ηZ = η2
γZ . (7)

We see the effects of the γ and Z propagators, and of the QED coupling α and the Fermi

coupling GF . Besides x and Q2, associated with the hadronic vertex, we have a variable (y or

s) which depends the energy of the whole ep system

y =
p · q
p · k =

(

ν

E

)

lab.frame
, s = (k + p)2 ≃ Q2

xy
. (8)

Both x and y must lie in the range from 0 to 1. The physical interpretation of y is given in

(18) below.
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Lµν is the tensor from the leptonic vertex known in terms of k and k′, and Wµν is the unknown

tensor describing the hadronic vertex. Although Wµν is unknown it must be constructed from

the 4-momenta p, q and the metric tensor gµν . For unpolarised DIS, there are three tensor

forms satisfying the requirements of current conservation qµWµν = qνWµν = 0. In this case the

general form is

Wµν =

(

−gµν +
qµqν

q2

)

F1(x, Q2) +
P̂µP̂ν

p · q F2(x, Q2) − iǫµναβ
qαpβ

2p · qF3(x, Q2), (9)

where P̂µ = pµ − (p · q)qµ/q2. The observable structure functions, Fi(x, Q2), are functions of

two scalar variables x and Q2 which can be constructed from p and q. Note that the last term,

with a ~q × ~p type structure, does not conserve parity. Thus F3 = 0 if Z exchange is negligible.

If we insert the general form (9) into (6) and use the known forms of Lµν , then, after some

algebraic manipulation, we find

dσ

dxdQ2
=

2πα2

xQ4
(Y+F2 ± Y−xF3 − y2FL) (10)

in the M2/Q2 → 0 limit, where

Y± = 1 ± (1 − y)2 and FL = F2 − 2xF1. (11)

A similar expression holds for CC DIS (that is eN → νX or νN → eX). For both NC and

CC processes, the − sign for Y− is taken for an incoming e+ or ν, and the + sign is taken for

an incoming e− or ν. Complete expressions for the lepton and hadron tensors Lµν , Wµν , the

structure functions and the cross sections, including those for polarised DIS, can be found in

Section 16 of the Review of Particle Properties[1].

For the moment let us focus on pure γ exchange, so F3 = 0. Even then to determine both

F2 and FL as functions of x and Q2 we need to measure the y dependence. That is we need

to perform DIS experiments at a range of ep energies1. We will see that FL = F2 − 2xF1 ≃ 0,

so often the experiments either used QCD to calculate FL or assumed that it was zero, and

presented results for F2(x, Q2). Nowadays, particularly with the advent of high y data, the

data are presented in terms of the so-called reduced cross section

σred(x, Q2) = F2(x, Q2) − (y2/Y+)FL(x, Q2). (12)

The HERA machine at DESY collided 30 GeV electrons head-on with 920 GeV protons,

giving

s ≃ 4EeEp ∼ 105 GeV2. (13)

Thus Q2 ≃ xys <∼ 105 GeV2, and x ≃ Q2/ys >∼ 10−4 for Q2 = 10 GeV2. We see from Fig. 4 that

the (x, Q2) reach of HERA is about two orders of magnitude better than the earlier fixed-target

DIS data. So given the data how do we interpret it? Let us start with the Quark Parton Model.

1Indeed, the final data runs of HERA were made at lower energies specifically to enable direct measurements

of FL to be performed. These should be available for DIS2008.
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Figure 4: Kinematic domains in x and Q2 probed by fixed-target and collider experiments,

shown together with the important constraints they make on the various parton distributions.

3 The Quark Parton Model

The basic idea of the QPM is that in the DIS process, ep → eX, the virtual proton interacts

with one of the quark constituents of the proton, see Fig. 5(a). We view the process from

a frame in which the proton is moving very fast so that the relativistic time dilation slows

down the rate with which the quarks interact with each other. Thus the struck quark appears

essentially free during the short time (about 1/Q) that it interacts with the photon. As a result

the ep interaction may be written as an incoherent sum (of probabilities) of scattering from

single free quarks
dσ

dxdQ2
=

∑

q

∫ 1

0
dξ fq(ξ)

(

dσ̂eq

dxdQ2

)

, (14)

where fq(ξ) is the probability of finding the quark q in the proton carrying a fraction ξ of its

momentum. The electron-quark cross section has the form

dσ̂eq

dxdQ2
=

2πα2e2
q

ŝ2

(

ŝ2 + û2

t̂2

)

δ(x − ξ), (15)
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Figure 5: (a) DIS via the Quark Parton Model; the subprocess eq → eq occurs at c.m. energy√
ŝ. (b) eq scattering with equal (opposite) helicities occurs with weighting 1 ((1− y)2) due to

angular momentum effects. We also show the centre-of-mass scattering angle θ̂ and note that

for essentially massless fermions all the particles have 3-momenta of magnitude |~k|.

where ŝ, t̂ and û are the Mandelstam variables for the eq → eq subprocess. Two sets of

alternative expressions are

ŝ = (xp + k)2 ≃ 2xp · k ≃ xs, ŝ ≃ 4~k 2,

t̂ = −Q2 ≃ −xys t̂ = −2~k 2 (1 − cos θ̂)

û ≃ −ŝ − t̂ ≃ −x(1 − y)s û = −2~k 2 (1 + cos θ̂),

(16)

where |~k| and θ̂ are the magnitude of the e, q three-momenta and the scattering angle in the eq

centre-of-mass frame. If we insert the first set into (15), then (14) becomes

dσ

dxdQ2
=

2πα2

Q4

∑

q

∫ 1

0
dξ fq(ξ) e2

q

[

1 + (1 − y)2
]

δ(x − ξ). (17)

Insight into the y dependence is obtained by comparing the two sets of equations for ŝ, t̂ and

û. We see that

y =
1

2
(1 − cos θ̂), (18)

so y = 0 corresponds to forward scattering and y = 1 to backward scattering. If e and q have

opposite helicities then there can be no backward (θ̂ = π) scattering by the conservation of Jz.

This is the origin of the weighting (1 − y)2 in Fig. 5(b). Crucial to this argument is the fact

that at high energies (E ≫ mfermion) the fermion helicity is conserved at a gauge boson vertex.

If we re-write the QPM formula (17) in the form

dσ

dxdQ2
=

2πα2

xQ4

∑

q

∫ 1

0
dξ fq(ξ) e2

q xY+ δ(x − ξ), (19)

and then compare with the general structure function formula (10), assuming only γ-exchange,

we obtain

F2 = 2xF1 =
∑

q

∫ 1

0
dξ fq(ξ) xe2

q δ(x − ξ) =
∑

q

e2
q xfq(x). (20)
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The first equality (i.e. FL = 0) is known as the Callan-Gross relation, and holds because the

quarks have spin 1/2. If the quarks had spin 0, then F1 would have been 0. Also notice that

in the QPM the structure functions scale, that is have no Q2 dependence.

We have noted that the proton is made of valence quarks (uud) and sea quarks in qq̄-pairs.

When probed at a scale Q all quark flavours with mq
<∼ Q are active. Usually the flavour is

used as a shortened notation for a parton distribution. So, for example,

fu(x) ≡ u(x) = uv(x) + usea(x),

fū(x) ≡ ū(x) = usea(x).
(21)

We therefore have flavour sum rules

∫ 1

0
(u − ū)dx =

∫ 1

0
uvdx = 2;

∫ 1

0
(d − d̄)dx =

∫ 1

0
dvdx = 1. (22)

The structure function measurements can be used to reveal the quark flavour composition

of the proton. From (20) we have

F ep
2 = x

(

4

9
u +

1

9
d +

1

9
s + ... +

4

9
ū +

1

9
d̄ +

1

9
s̄ + ...

)

. (23)

Using isospin invariance it follows that the neutron structure function is

F en
2 = x

(

4

9
d +

1

9
u +

1

9
s + ... +

4

9
d̄ +

1

9
ū +

1

9
s̄ + ...

)

. (24)

Similar formulae can be obtained for CC DIS. For the ep → νX processes we have

dσ(e±)

dxdQ2
=

G2
F

2πx

(

M2
W

Q2 + M2
W

)2

(Y+F W
2 ∓ Y−xF W

3 − y2F W
L ). (25)

Let us consider e−p → νX (or ν̄p → e+X); here the basic subprocesses are

e−u → νd, with “same” helicities

e−d̄ → νū, with “opposite” helicities.
(26)

If we now recall that Y± ≡ 1 ± (1 − y)2, and use the helicity diagrams of Fig. 5(b), then it

follows that

F W−

2 = 2x(u + d̄ + c + s̄...), xF W−

3 = 2x(u − d̄ + c − s̄...). (27)

For e+p → ν̄X (and νp → e−X) the structure functions are obtained by the flavour interchanges

d ↔ u, s ↔ c, while those for the neutron are obtained from those of the proton by the

interchange u ↔ d. Thus at large x, where the valence quark distribution dominates, we have

σCC(e−p) ∼ xuv, and σCC(e+p) ∼ (1 − y)2xdv. (28)
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Figure 6: An historical plot of SLAC NC- and fixed-target muon neutrino CC-DIS data showing

agreement with the QPM relations (29) and (30), but also indicating that only 50% of the

proton’s momentum is carried by quarks.

It is informative to compare F2(N) ≡ (F p
2 + F n

2 )/2 for NC and CC DIS. For NC we have

from (23) and (24)

F γ
2 (eN) =

5

18
x(u + ū + d + d̄ + ...), (29)

whereas for CC processes, νN → µX, it follows from (27) that

F W
2 (νN) = x(u + ū + d + d̄ + ...). (30)

An experimental comparison of DIS data in the early 1970s is shown in Fig. 6. The good

agreement with the QPM relations is evident, but the area under the curve

∫ 1

0
F2(νN)dx =

∫ 1

0

∑

q,q̄

xq(x)dx ≃ 0.5, (31)

shows that only 50% of the proton’s momentum is carried by quarks. It provided the first

(indirect) evidence for the existence of the gluonic component of the proton.

Before the advent of QCD there was a big puzzle. In DIS the struck quark appears to act as

if it were free inside the proton. Yet it is never seen. No matter how hard it is hit, a free quark

never emerges. It is confined within the proton. To say that a quark acts as if it were totally

free, in a deep inelastic scatter, is not quite correct. We need to allow for the interactions

of quarks and gluons (QCD), and to see how this improves the QPM description of DIS. At

the same time, we will see that QCD appears to be able to solve the big puzzle. It offers the

possibility of an explanation of quark confinement.
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Figure 7: The lowest-order Feynman graphs for (a) the QED interaction between charged

electrons and (b) the QCD interaction between coloured quarks via a coloured gluon, (RB).

4 Résumé of QCD

Colour was first introduced to overcome the statistics problem in the quark model of hadron

spectroscopy. Take for example the hadron ∆++, which was discovered as a resonance in π+p

scattering. It has spin 3/2 and is made of three u quarks, which can be in a state with all their

spins parallel. But quarks are fermions and, by the exclusion principle, it should not be possible

to have three identical quarks in the same state. A way to overcome the anomaly was soon

proposed, which only later was found to have profound implications. The idea is to give quarks

an additional attribute, colour, which can take three possible values, say red, green and blue.

Hadrons are postulated to be colourless or, to be precise, colour singlets of the group SU(3)

constructed from the fundamental colour triplet of quarks (qR, qG, qB). Baryons (qqq) and

mesons (qq̄) are clearly allowed, but single free quarks are forbidden, since they carry colour.

In effect the puzzle of quark confinement (the experimental absence of free quarks) has been

replaced by the puzzle of why colour should be confined.

Recall that the electromagnetic force between charged particles is mediated by the exchange

of photons, Fig. 7(a). The strength of the quantum electrodynamic (QED) interaction is

determined by the charge of the particles. QED can be obtained from a remarkably simple

symmetry principle: invariance of the theory under local phase transformations of the fields for

the charged particles. Local means that we can arbitrarily vary the phase from space-time point

to point. Since phase transformations commute with each other and form a U(1) symmetry

group, we say that QED is a U(1) Abelian local gauge theory. The particles which emerge

naturally from the theory to compensate for the phase differences from point-to-point or, in

other words, to ensure the local gauge (i.e. phase) invariance of the theory, have zero mass and

spin 1. These “carriers” of the electromagnetic force, the so-called gauge bosons, have exactly

the properties of, and can be identified with, the familiar photon.

In analogy, in 1972, a local SU(3) gauge theory, quantum chromodynamics (QCD), was

proposed as the theory of the strong interaction. In QCD the interaction is mediated by

the exchange of zero-mass, spin-1 gluons between coloured quarks, Fig. 7(b). In QCD there

are three different colour charges (red, green and blue) which have to be conserved, so the
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most general phase transformation is slightly more complicated. To be precise, QCD is based

on invariance under the non-Abelian SU(3) group of local phase transformations among the

triplet of colour charges, q = (qR, qG, qB). The gluons themselves carry colour. In fact, eight

different colour combinations of gluon are required to neutralize all possible phase differences:

one colour combination is made explicit in Fig. 7(b).

Note that the gluons have zero-mass and therefore infinite range, and yet the strong force

between hadrons has such a very short range. Indeed, it is ironic that the nuclear force, where

it all began, is now relegated to a residual colour interaction, between colour neutral hadrons.

The binding of colourless protons and neutrons into nuclei is similar to the van der Waals force

which binds electrically neutral atoms into a molecule. Since colour is confined, the nuclear

force must be short range and confined to hadronic dimensions.

5 The running QCD coupling

The most crucial feature of QCD is the dependence of the QCD coupling, αs ≡ g2/4π, on Q2.

At first sight, it appears that a dimensionless2 QCD observable R must, for energies Q ≫ mq,

be independent of Q2. The only energy scales in the QCD Lagrangian are the quark masses,

and since the relevant ones are very light we would expect this scaling property to set in at low

Q2. However this argument is not true in a renormalizable field theory like QCD (or QED). A

scale enters when we use perturbation theory to calculate the observable

R =
∑

n

cnαn
s , (32)

since we encounter (loop) Feynman diagrams which diverge logarithmically. We need to renor-

malize (reparameterize) the theory, which introduces a renormalisation scale µ. As a conse-

quence we find that the dimensionless observable R no longer scales, but has logarithmic scaling

violations, that is, it has the functional dependence R(log(Q2/µ2), αs(µ
2)).

First we discuss the QED coupling. Vacuum polarisation effects (i.e. polarised e+e−-pairs)

screen the bare electron charge. The screening is least at short photon wavelengths, which

causes the QED coupling, α = e2/4π, to increase with the energy of the photon. The situation

is shown in Fig. 8, which also shows the relevant Feynman diagrams. Summing up these

diagrams we obtain, at large Q2,

α(Q2) = α0



1 +
α0

3π
log

Q2

M2
+

(

α0

3π
log

Q2

M2

)2

+ ...



 =
α0

1 − α0

3π
log Q2

M2

, (33)

where a cut-off, M , on the loop momentum has been introduced to prevent an infinite contri-

bution. We may eliminate the dependence of α on this arbitrary parameter M by introducing

the renormalisation scale µ. From (33) we have

1

α(Q2)
=

1

α0
− 1

3π
log

Q2

M2
, and

1

α(µ2)
=

1

α0
− 1

3π
log

µ2

M2
. (34)

2The structure function F2 is such a dimensionless observable.
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Figure 8: The vacuum polarisation effects which cause the QED coupling, α ≡ e2/4π, to run.

The shorter the wavelength of the probing photon the more of the bare electron charge it sees.

QED determines the running of the coupling α, but experiment fixes the normalisation, which

is traditionally given in terms of α(0) ≃ 1/137.

The M dependence can be eliminated by subtracting these two relations. In this way we obtain

α(Q2) =
α(µ2)

1 − (α(µ2)/3π) log(Q2/µ2)
. (35)

In effect, the infinities of the theory have been removed at the price of introducing a renor-

malisation scale µ. QED predicts the “running” of α, but experiment is needed to predict its

absolute value.

Note that, due to basic properties of gauge field theories, the ultraviolet divergences of the

Feynman diagrams of Fig. 9 mutually cancel, via the so-called Ward identities. This is just as

well, because it ensures that the renormalized charge of the electron, muon,... remain equal.

Turning now to QCD we have a new vertex to consider, the triple-gluon vertex, which

arises since the gluons themselves carry colour charge. This changes everything, as Fig. 10

shows. There is a new vacuum polarisation diagram with a gluon loop, which antiscreens the

colour charge, which dominates the screening arising from the nf quark-loop diagrams3. As a

consequence the −1/3π in (35) becomes +b0, with

αs(Q
2) =

αs(µ
2)

1 + b0 αs(µ2) log(Q2/µ2)
. (36)

3nf is the number of active quark flavours, that is the number of quarks with mq < Q.
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Figure 9: The Ward identities ensure that the ultraviolet divergences of these diagrams mutually

cancel.

Figure 10: In addition to the ‘screening’ quark loop, QCD has ‘antiscreening’ from the gluon-

loop diagram, which arises from the non-Abelian nature of the SU(3)-colour gauge group which,

in turn, allows a triple-gluon vertex (as well as a quartic-gluon coupling, see Fig. 11). As a

result the running of the QCD coupling constant, αs, is the ‘opposite’ of QED. It decreases

with energy, allowing the use of perturbation theory at high energies.

where4

b0 = −nf

6π
+

33

12π
. (37)

At a stroke, the non-Abelian nature of QCD has solved the puzzling dilemma of the quark

model. The big puzzle was that when the proton is hit hard in DIS, the quarks act as if they

are essentially free; and yet no free quark has ever been seen – they are confined within the

hadron5. This asymptotic freedom and infrared slavery is precisely what the running of the

QCD coupling indicates, see the αs plot in Fig. 10.

The ultraviolet divergences of the QCD diagrams analogous to those in Fig. 9 cancel due to

the Slavnov-Taylor identities of QCD. Moreover for a gauge theory the equality of the qq̄g and

ggg couplings is preserved by renormalization.

Let us return to our dimensionless observable R, which due to renormalization becomes the

function R(Q2/µ2, αs(µ
2)). However R cannot depend on the choice of renormalization scale,

4The −1/3π in (35) becomes −1/6π for each quark loop in (36) due to the convention used to normalize the

SU(3) matrices.
5Confinement still has to be proven. Lattice QCD is the technique to describe physics in the strong coupling

regime.
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Figure 11: The diagrams which specify the two-loop β-function. Note that besides the triple-

gluon vertex, QCD contains a quartic gluon coupling which gives rise to the final diagram.

so we have a renormalization group equation (RGE)

dR

dlogµ2
=

(

∂

∂logµ2
+

∂αs

∂logµ2

∂

∂αs

)

R = 0. (38)

It can be shown that the solution of the RGE gives

R(Q2/µ2, αs(µ
2)) = R(1, αs(Q

2)). (39)

That is the running of αs determines the Q dependence of R. In general, the running is

expressed in terms of a β-function, defined by

∂αs/∂log µ2 = β(αs). (40)

So far we have introduced the β-function at one-loop, in which we have summed up the leading

logs, that is all the (αslog(Q2/µ2))n contributions. From (36) it is easy to show that this gives

β(αs) = − b0 α2
s. (41)

The two-loop β-function sums up the next-to-leading logs resulting from the two-loop diagrams

shown in Fig. 11, which are found to give an α3
s term with coefficient b1 = (153 − 19nf)/24π2.

The β-function then becomes

β(αs) = − b0 α2
s − b1 α3

s. (42)

Before returning to DIS and the structure of the proton, let us make a few more notes about

the properties of the QCD coupling αs. First the coupling at two-loops is the solution of the

transcendental equation

1

αs(Q2)
− 1

αs(µ2)
+

b1

b0
log

(

αs(Q
2)

αs(µ2)

[

b0 + b1αs(µ
2)

b0 + b1αs(Q2)

])

= b0log
Q2

µ2
. (43)

Next, the value of αs depends on the renormalization scheme. Since in two different schemes the

values are related by α′

s = αs(1+cαs), it follows that b0 and b1 are scheme independent, whereas

the higher coefficients are not. Nowadays, most calculations in fixed-order QCD perturbation
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Figure 12: The O(αs) diagrams which contribute to the proton structure function. On the first

diagram we show new variables, the longitudinal momentum fraction y carried by the quark

and the transverse momentum kt of the emitted gluon, which must be integrated over.

theory are performed in the so-called modified minimal subtraction (MS) scheme. Thirdly, note

that the coefficients bi depend on the number of active flavours, nf . As Q increases through

a flavour threshold we will need to ensure the continuity6 of αs. For example at the b-quark

threshold we will require αs(m
2
b , 4) = αs(m

2
b , 5). Finally, recall that perturbative QCD tells us

how the coupling varies with scale, but not the absolute value itself. The latter is obtained

from experiment. Traditionally the value is quoted at Q = MZ in the MS scheme for nf = 5;

the current value, determined from many independent experiments is

αs(M
2
Z) = 0.1176 ± 0.002. (44)

Lattice QCD can also predict the value of the coupling. It is encouraging that these very

different determinations are found to be consistent with each other.

6 Running parton densities: DGLAP equations

In terms of QCD perturbation theory, the QPM formula (20) may be regarded as the zeroth-

order term in the expansion of F2 as a power series in αs. To include the O(αs) QCD corrections,

we have to calculate the photon-parton subprocess diagrams shown in Fig. 12. The QPM of

Section 3 is the first diagram in the second |...|2. Due to the propagator of the virtual quark,

the first diagram in the first |...|2 is proportional to (yp−k)−2 ∝ (2p ·k)−1, for massless quarks.

It therefore has a collinear divergence when the gluon of 4-momentum k is emitted parallel to

the incoming quark of 4-momentum yp.

The partonic approach is only valid if the second diagram in the first |...|2 can be neglected.

Then, the emitted gluon can be considered as part of the proton structure. It turns out that

both diagrams are required to ensure gauge invariance, but that the second only plays the role

of cancelling the contributions from the unphysical polarization states of the gluon. Adopting

a physical gauge, in which we sum only over transverse gluons, only the first diagram remains.

6Beyond two-loops there are discontinuities in αs at the flavour thresholds. Of course, the observables are

continuous, since the above discontinuities are cancelled by ones occurring in the coefficients functions, see (75)

below.
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To evaluate its contribution we need to sum over all the possible values of the new variables,

y and kt, that are introduced to describe the gluon. First we write down the answer and then

explain its structure7. The result is

F2(x, Q2)

x
=
∑

q

∫ 1

x

dy

y
fq(y)e2

q

[

δ

(

1 − x

y

)

+
αs

2π

(

P

(

x

y

)

log
Q2

µ2
0

+ C

(

x

y

))]

, (45)

where P and C are known functions. These will become the universal parton splitting functions

(here P ≡ Pqq describes the q → qg splitting) and the process dependent coefficient function

C. The δ-function term in (45) is the zeroth-order QPM contribution with y = x that we

derived in Section 3. The first order term in αs comes from the first diagram in Fig. 12. A

straightforward application of the Feynman rules shows that

P (z) =
4

3

1 + z2

1 − z
, (46)

and that the log(Q2/µ2
0) originates from the integration over the gluon (bremsstrahlung) trans-

verse momentum spectrum
∫ Q2

µ2
0

dk2
t

k2
t

= log

(

Q2

µ2
0

)

, (47)

where the upper limit is set by the virtuality of the photon which scatters off a quark of

transverse size 1/Q. Really the lower limit of integration should be set to zero. We have

therefore arbitrarily cut-off the integral at some scale µ0. How do we make sense of (45)?

Inspection of (45) shows that, after including the O(αs) contribution, we may replace fq by

a well-behaved8 running parton density

fq(x, µ2) = fq(x) +
∫ 1

x

dy

y
fq(y)

αs

2π

(

P

(

x

y

)

log

(

µ2

µ2
0

)

+ C1

)

, (48)

such that

F2(x, Q2)

x
=
∑

q

∫ 1

x

dy

y
fq(y, µ2)e2

q

[

δ

(

1 − x

y

)

+
αs

2π

(

P

(

x

y

)

log
Q2

µ2
+ C2

)]

, (49)

where the division of the known function C into C1+C2 depends on the choice of (factorization)

scheme.

The dependence of fq(x, µ2) on the (non-perturbative) scale µ0 can be eliminated in an

analogous way to the dependence of the coupling α on the cut-off M , see (34) and (40). From

(48) we obtain
∂fq(x, µ2)

∂logµ2
=

αs

2π

∫ 1

x

dy

y
fq(y, µ2) P

(

x

y

)

, (50)

which describes the evolution of the parton density with µ2. This is known as the DGLAP

evolution equation [9]. In effect we have absorbed all the collinear infrared sensitivity into a

well defined running parton density fq(x, µ2). We cannot use perturbative QCD to calculate the

absolute value of fq(x, µ2), but we can, via the DGLAP equation, determine its µ dependence.

7This will be a prolonged discussion. Only in Section 8 will we emphasize the important “factorization

theorem” structure of the formula.
8This follows because everything else in (49) is well-behaved.
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7 Further discussion of the DGLAP evolution equations

Our O(αs) treatment is incomplete. A hint that this is so, is the presence of a soft divergence,

which arises when the energy of the emitted gluon tends to zero, in addition to the collinear

divergence. This is reflected in the z = 1 singularity of P (z) ≡ Pqq(z), see (46). At this point

it is crucial to include the virtual gluon diagrams of Fig. 12. The (O(αs)) contribution is the

interference of these three diagrams with the QPM diagram. This contribution is also singular

at z = 1. It turns out that the singularity exactly cancels the z = 1 singularity present in the

real contribution. After the cancellation of the singularity there remains a residual δ(1 − z)

contribution from the virtual diagrams. Instead of calculating this contribution explicitly, there

is an easy way to see what it must give. It must be such to satisfy

∫ 1

0
Pqq(z) dz = 0, (51)

which expresses the fact that the number of valence quarks is conserved during the evolution.

The virtual diagrams regularize the 1/(1 − z) singularity in Pqq so the constraint holds. This

modification to Pqq can be expressed in terms of the so-called “+ prescription” for regularization

in which 1/(1 − z) is replaced by 1/(1 − z)+ defined so that

∫ 1

0
dz

f(z)

(1 − z)+
=

∫ 1

0
dz

f(z) − f(1)

(1 − z)
(52)

where (1 − z)+ = (1 − z) for z < 1. Ensuring the constraint (51) gives

Pqq =
4

3

1 + z2

(1 − z)+

+ 2δ(1 − z). (53)

Our O(αs) treatment is still not complete. In addition to the γq → gq subprocesses shown

in Fig. 12, at O(αs), we need to include the γg → qq̄ processes. Then the DGLAP evolution

equation (50) for the quark density q ≡ fq becomes

∂q(x, Q2)

∂logQ2
=

αs

2π
(Pqq ⊗ q + Pqg ⊗ g) (54)

where g ≡ fg is the gluon density, and Pqq ≡ P is the q → q(g) splitting function of (53). It

can be shown that the g → q splitting function

Pqg =
1

2
(z2 + (1 − z)2). (55)

In general Pab describes the b → a parton splitting. Also in (54) we have used ⊗ to abbreviate

the convolution integral

P ⊗ f ≡
∫ 1

x

dy

y
fq(y) P

(

x

y

)

. (56)
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Clearly we must also consider the evolution of the gluon density

∂g(x, Q2)

∂logQ2
=

αs

2π

(

∑

i

Pgq ⊗ (qi + q̄i) + Pgg ⊗ g

)

, (57)

where the sum is over the i quark flavours, and where the q → g and g → g splitting functions

can be shown to be

Pgq = Pqq(1 − z) =
4

3

1 + (1 − z)2

z
, (58)

Pgg = 6

(

1 − z

z
+

z

(1 − z)+

+ z(1 − z)

)

+
(

11

2
− nf

3

)

δ(1 − z). (59)

Here the coefficient of the δ(1 − z) term can be obtained from the constraint that all of the

momentum of the proton must be carried by its constituents

∫ 1

0
dz z

(

∑

i

(qi(z, Q
2) + q̄i(z, Q

2)) + g(z, Q2)

)

= 1 (60)

for all Q2.

It is convenient to introduce flavour singlet (Σ) and non-singlet (qNS) quark distributions:

Σ =
∑

i

(qi + q̄i). (61)

An example of a non-singlet is the up valence distribution

uv = u − ū. (62)

Non-singlet evolution satisfies (50) and decouples from the singlet and gluon evolution equa-

tions, which are coupled together as follows

∂

∂logQ2

(

Σ

g

)

=
αs

2π

(

Pqq 2nfPqg

Pgq Pgg

)

⊗
(

Σ

g

)

. (63)

In general the splitting functions can be expressed as a power series in αs

Pab(αs, z) = P LO
ab (z) + αsP

NLO
ab (z) + α2

sP
NNLO
ab (z) + ... (64)

where the NLO expressions were computed in the period 1977-80 and the NNLO in the period

ending 2004. Leading order (LO) DGLAP evolution, which we have outlined, sums up the lead-

ing log contributions (αslogQ2)n, and next-to-leading order evolution includes the summation

of the αs(αslogQ2)n−1 terms.

If we are given the x dependence of the parton densities at some input scale Q2
0 then we may

solve the evolution equations to determine them at higher Q2. Frequently this is performed

simply by step-by-step integration up in Q2.
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An alternative procedure is to rewrite the equations in terms of moments, which for an

arbitrary function f(z) are defined as

f (n) =
∫ 1

0

dz

z
znf(z). (65)

If we now multiply the DGLAP equation (50) by xn−1, and integrate over x, we obtain

∂

∂logQ2

∫ 1

0
xn−1qNS(x, Q2)dx =

αs

2π

∫ 1

0
yn−1qNS(y, Q2)dy

∫ 1

0
zn−1Pqq(z)dz (66)

using x = yz. That is, the evolution equation then turns into an ordinary linear differential

equation for the moments,

∂q
(n)
NS

∂logQ2
=

αs

2π
P (n)

qq q
(n)
NS . (67)

For fixed αs the solution is

q
(n)
NS (Q2) = cn exp

(

γ(n)logQ2
)

= cn [Q2]γ
(n)

, (68)

where γ(n) ≡ αsP
(n)
qq /2π is known as the ‘anomalous dimension’. If we incorporate the running

of αs, (36), then it is easy to show that

q
(n)
NS (Q2) = cn [αs(Q

2)]−γ(n)/2πb0 . (69)

This is the LO behaviour. In analogy with (38) and (39), the general result may be obtained

from the RGE
dq(n)

dlogµ2
=

(

∂

∂logµ2
+ β(αs)

∂

∂αs
+ γ(n)(αs)

)

q(n) = 0, (70)

which can be shown to have the solution

q(n)(Q2/µ2, αs(µ
2)) = q(n)(1, αs(Q

2)) exp

(

∫ αs(Q2)

αs(µ2)

γ(n)(αs)

β(αs)
dαs

)

. (71)

In addition to (67) we have

∂

∂logQ2

(

Σ(n)

g(n)

)

=
αs

2π

(

P (n)
qq 2nfP

(n)
qg

P (n)
gq P (n)

gg

)(

Σ(n)

g(n)

)

. (72)

Once we have the analytic solutions of these equations for the moments, we can obtain the z

distributions of the partons by the inverse Mellin transforms

fi(z, Q
2) =

1

2πi

∫ c+i∞

c−i∞
dn z−nfi(n, Q2), (73)

where the contour is to the right of all the singularities of the integrand.
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8 Observables: the factorization theorem

We return to the equation for F2(x, Q2), eq.(49). We have described how the collinear singu-

larities of the formula have been swept into well-defined running parton densities, fi(y, µ2
F ),

evaluated at some (factorization) scale9 µF in the perturbative region. A convenient choice is

to set µF = Q, so that the log(Q2/µ2
F ) term disappears. We then have, including the γg → qq̄

contribution,

F2(x, Q2)

x
=

∑

q,q̄

e2
q

∫ 1

0

dy

y

[

fq(y, Q2)

(

δ

(

1 − x

y

)

+
αs

2π
C2,q

(

x

y

))

+ fg(y, Q2)
αs

2π
C2,g

(

x

y

)]

, (74)

where the C2,i are the coefficient functions for the observable F2. Although all the collinear

singularities are absorbed by the running of the fi, recall that the prescription is not unique.

We can add any finite term. So we must specify a scheme. The MS factorization scheme is

favoured. It was mentioned at the end of Section 5 as also the choice of renormalization scheme.

We can generalize this result to describe the structure functions of all DIS processes. For the

structure functions Fa, describing the deep inelastic processes ℓ + p → ℓ′ + X, the factorization

formula, which holds to all orders in perturbation theory, has the generic form

Fa(x, Q2) =
∑

i=q,q̄,g

∫ 1

0

dy

y
fi(y, Q2) Ca,i

(

x

y
, αs(Q

2)

)

+ O

(

Λ2
QCD

Q2

)

. (75)

The final term denotes non-perturbative contributions, such as hadronization effects, multipar-

ton interactions etc. For sufficiently high Q2 these effects are negligible, and the expression for

the observable factorizes into

• universal parton densities (of the proton), fi, which absorb the long distance collinear

singularities. They cannot be calculated in perturbative QCD, but their Q2 dependence

is calculable using the DGLAP evolution equations, in which the splitting functions are

calculable as power series in αs.

• coefficient functions, Ca,i, which describe the short distance subprocess. They are calcu-

lable from perturbative QCD as a power series in αs, but are unique to the particular

observable, Fa.

The factorization is displayed visually in Fig. 13

A similar factorization applies to inclusive ‘hard’ hadron-hadron collisions. For instance,

consider the LHC process

p(p1) + p(p2) → H(Q, ..) + X (76)

9The subscript F is added to distinguish it from the renormalization scale introduced in Section 5. In practice

these scales are often chosen to be equal.
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Figure 13: Schematic picture of the factorization theorem for a deep inelastic structure function

of the proton.

where H denotes the triggered hard system, such as a weak boson, a pair of jets, a Higgs boson

etc. The typical hard scale Q could be the invariant mass of H or the transverse momentum

of a jet. Then according to the factorization theorem the cross section is of the form

σ =
∑

i,j

∫ 1

xmin

dx1dx2 fi(x1, µ
2
F )fj(x2, µ

2
F ) σ̂ij(x1p1, x2p2, Q...; µ2

F ), (77)

where typically xmin
>∼ Q2/s where s = (p1+p2)

2. For the production of a system H of invariant

mass M and rapidity y, the momentum fractions x1,2 = Me±y/
√

s. The fi and σ̂ depend on

the renormalization scale µR via αs(µ
2
R). For instance

σ̂ij = αk
s

n
∑

m=0

C
(m)
ij αm

s (78)

where LO, NLO... correspond to n=1,2...; note that, for example, k=0,2,.. for W , dijet,...

production. We should work to the same order in the series expansion of the splitting functions.

In practical applications it is usual to choose µF = µR ∼ Q and to use variations about this

value to estimate the uncertainty in the predictions. Of course the physical cross section σ

does not depend on the scales, but the truncation of the perturbative series brings in scale

dependence. If we truncate at order αn
s , then the uncertainty is of order αn+1

s .

9 Global parton analyses

Two groups (CTEQ [10] and MRST [11]) have used all available deep inelastic and related hard

scattering data involving incoming protons (and antiprotons) to determine the parton densities,

fi, of the proton. The procedure is to parametrize the x dependence of fi(x, Q2
0) at some low,

yet perturbative, scale Q2
0. Then to use the DGLAP equations to evolve the fi up in Q2, and

to fit to all the available data (DIS structure functions, Drell-Yan production, Tevatron jet and

W production...) to determine the values of the input parameters. In principle there are 11

parton distributions (u, ū, d, d̄, s, s̄, c, c̄, b, b̄, g). However mc, mb ≫ ΛQCD. So c = c̄ and b = b̄

are calculated from perturbative QCD via g → QQ̄. Also the evidence from neutrino-produced

dimuon data, νN → µ+µ−X, is that10 s ≃ s̄ ≃ 0.2(ū + d̄) at Q2 ≃ 1 GeV2.

10Analysis of NuTeV data for ν and ν̄ beams indicates some x dependence of the factor “0.2”, and that s > s̄

for x ∼ 0.01.
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A common choice of parametrization of the parton densities is

xf(x, Q2
0) = A(1 − x)βxα(1 + ǫ

√
x + γx) (79)

with up to five parameters (A, α, β, ǫ, γ) for each parton. Three of the A’s are determined from

sum rules. The input partons must satisfy the two valence quark sum rules

∫ 1

0
dx(u − ū) = 2,

∫ 1

0
dx(d − d̄) = 1, (80)

and also we must satisfy the momentum sum rule (60).

We can obtain some idea of what to expect for the values of the βi parameters from the

spectator counting rules. As x → 1 physical arguments indicate that

f(x) → (1 − x)2ns−1 (81)

where ns is the minimum number of spectator quarks which share between them the residual,

vanishingly small momentum of the proton. The greater the number of spectators, the smaller

the chance of producing a parton with a large fraction of the proton’s momentum. For a valence

quark, gluon and sea quark it is easy to see that we have ns = 2, 3 and 4 respectively. So we

may expect βv ∼ 3, βg ∼ 5 and βsea ∼ 7.

For a rough guide to the anticipated values of the αi parameters, we might appeal to Regge

behaviour, since the limit x = Q2/2p · q → 0 corresponds to sγp ≃ 2p · q → ∞. In this limit the

γp cross section is approximately proportional to

∑

e2
i xfi(x) ∼ (rP sαP (0)−1

γp + rRsαR(0)−1
γp ) ∼ (rP x1−αP (0) + rRx1−αR(0)). (82)

The naive expectations are that the Pomeron and the leading secondary Reggeons have trajec-

tories with intercepts αP (0) ≃ 1.08 and αR(0) ≃ 0.5. The Pomeron corresponds to flavourless

exchange so we expect the parameters αsea,g ∼ −0.08, whereas the valence density corresponds

to flavour exchange with αv ∼ 0.5. So, in summary, we might naively expect

xfv ∼ x0.5(1 − x)3, xfg ∼ x−0.08(1 − x)5, xfsea ∼ x−0.08(1 − x)7 (83)

types of behaviour.

In practice, the heavy quark densities, c, b, require special treatment. These are particularly

important at small x, especially as Q2 increases. We can see the problem by noting that for

Q2 ∼ m2
c the charm quark does not act like a parton, but instead is created in the final state

by photon-gluon fusion, γg → cc̄. On the other hand for Q2 ≫ m2
c , clearly c behaves like

a massless parton. It is therefore necessary to use a variable flavour number scheme [12] in

which we match a 3- to a 4-flavour parton description as we evolve up through the charm quark

threshold, Q2 ∼ m2
c .

Table 1 highlights some processes used in the global fits, and their primary sensitivity to

the parton densities. The kinematic ranges of the fixed-target and collider experiments are
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Figure 14: Parton densities, xfi(x, µ2), at µ2 = 20 and 104 GeV2, obtained in a recent NNLO

global analysis [11]. The dominance of the gluon at small x and of the valence quarks at large

x is clearly evident. The uncertainties shown only reflect the errors of the experimental data.

A discussion of the theoretical errors can be found in [13].

Figure 15: The uncertainty in the qq̄ and gg parton luminosities for producing a state of mass M

at the LHC, arising from the experimental errors of the data fitted in a global parton analysis.
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Table 1: Lepton-nucleon and related hard-scattering processes (whose data are used in the

global parton analyses) and their primary sensitivity to the parton distributions that are probed.

Main PDFs

Process Subprocess probed

ℓ±N → ℓ±X γ∗q → q g(x <∼ 0.01), q, q

ℓ+(ℓ−)N → ν(ν)X W ∗q → q′ ”

ν(ν)N → ℓ−(ℓ+)X W ∗q → q′ ”

ν N → µ+µ−X W ∗s → c → µ+ s

ℓN → ℓQX γ∗Q → Q Q = c, b

γ∗g → QQ g(x <∼ 0.01)

pp → γX qg → γq g

pN → µ+µ−X qq → γ∗ q

pp, pn → µ+µ−X uu, dd → γ∗ u − d

ud, du → γ∗

ep, en → eπX γ∗q → q

pp → W → ℓ±X ud → W u, d, u/d

pp → jet +X gg, qg, qq → 2j q, g(0.01 <∼ x <∼ 0.5)

complementary (as is shown in Fig. 4) which enables the parton densities to be determined

over a wide range in x and Q2. The analyses can now be done to NNLO. An example11 of the

resulting parton distributions is shown in Fig. 14.

The gluon density is the most poorly known parton distribution. At small x ( <∼ 0.01) it is

constrained by the HERA DIS scaling violations, and for values of x up to about 0.5 by the

Tevatron jet data. The momentum sum rule also gives an important constraint.

Thanks to the HERA experiments, the parton densities are well-known12 down to about x ∼
10−3. Also they are well-known up to x ∼ 0.5. What are the implications of the uncertainties13

in the parton densities for the LHC experiments? Some idea can be obtained from Fig. 15,

which shows the uncertainties in the Lqq̄ and Lgg parton luminosities relevant to the production

of a state of mass M at the LHC. The parton luminosities are defined as

Lab = Cab

∫ 1

τ

dxa

xa
fa(xa)fb(τ/xa) (84)

11Comprehensive sets of parton densities available as programme-callable functions can be found in

http://durpdg.dur.ac.uk/HEPDATA/PDF.
12We discuss possible corrections arising from the resummation of log1/x terms and from absorptive effects,

both of which lie outside pure DGLAP, in Sections 10 and 11 respectively. We shall see that, at low scales, the

parton densities have large uncertainties for x <∼ 10−3.
13Detailed discussions of the uncertainties arising in the global analyses can be found in [14, 15, 16, 13].
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Figure 16: Partonic x, Q2 domains sampled by the LHC and HERA, as well as fixed-target DIS

experiments. The rapidity interval for the production of a Higgs boson of mass 120 GeV at the

LHC is indicated by an open arrow; the relevant parton distributions should be reliable from

DGLAP evolution of global analyses of HERA, fixed-target DIS, and Tevatron jet data. The

possibility of the LHC experiments probing the region x <∼ 10−4, Q2 >∼ 10 GeV2 is mentioned

at the end of Section 12.

where Cab is a colour factor. Since xaxbs ≃ M2 we see xb = τ/xa where τ = M2/s. Due to the

factorization theorem, the cross section for the production of the state of mass M is

σ =
∑

a,b

Lab σ̂(ab → M ; ŝ = τs). (85)

The widening of the gg → M error band in Fig. 15 for M > 1 TeV is due to the lack of

knowledge of the gluon at high x. This plot does not include the theoretical errors in a pure

DGLAP parton analysis. Nevertheless, for the predictions of the cross sections of the central

production of high mass systems at the LHC, the uncertainty coming from parton densities is

less than ±10%. This is also clear from an inspection of Fig. 16.

As an example, we show in Fig. 17 the predicted cross sections[17] for W± production at

the LHC. At zeroth order we only have the qq̄-driven subprocesses ud̄ → W+ and dū → W−;

so we expect the parton luminosity errors to be relatively small. The cross section inequality
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Figure 17: LO, NLO and NNLO predictions for the rapidity distribution of W± production

at the LHC. The width of the bands reflects the uncertainty coming from the variation of the

scale in the interval MW /2 ≤ µ ≤ 2MW . The NNLO prediction is the very narrow band lying

within the NLO error band.

σ(W+) > σ(W−) reflects uv > dv. Also note the rapid decrease in the uncertainty due to scale

changes as we proceed from LO→NLO→NNLO. Allowing for uncertainties from all sources,

the W± production cross section is predicted to an accuracy of ±5%, which enables it to be

considered as a luminosity monitor for the LHC.

In Fig. 18 we show the cross sections in nb for various processes at the Tevatron and at the

LHC. If the collider luminosities were 1033 cm−2s−1, then the scale on the plot also gives the

number of events which would occur each second. Note that eventually the LHC is planned to

achieve a luminosity some 10 times greater than this.

10 Beyond DGLAP: low x partons and BFKL

Fig. 19 shows the physical phenomena we expect to be appropriate in various regions of the

log(1/x) – log(Q2) plane. We shall discuss them here and in the next Section. Overlaid is a line

indicating the reach achieved by the HERA experiments. Of course the position of this line is

well known, see Fig. 4. However the positions of the various domains relative to this line are

not well established. Certainly HERA has opened up the small x domain, with DIS structure

function measurements reaching down to x ∼ 10−4 while Q2 is still in the perturbative domain.

So far our approach has been to work with DGLAP evolution truncated at a fixed per-

turbative order. This pure DGLAP approach has been phenomenologically successful, even,

surprisingly, down to x ∼ 10−4 with Q2 ∼ 2 GeV2. Nevertheless, although the global parton
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Figure 18: The cross sections (in nb) for various processes at the Tevatron and the LHC. For

the LHC luminosity quoted, the scale also corresponds to the number of events/second. We

also give an indication of the physics which may be probed by the processes at the LHC. Note

that the rates of Higgs and SUSY particle production do not include the dilution of a possible

signal due to the branching fraction of the particular channel investigated. Moreover note

how important it is to reduce the huge background and to overcome “pile-up” from multiple

events per bunch crossing at the higher luminosity. Of course it would be even more exciting

to discover something totally unexpected.
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Figure 19: Schematic sketch of the physical phenomena in various regions of the log(1/x) –

log(Q2) plane, compared to the kinematic reach of HERA. The gluonic content of the proton,

as resolved by a Q2 probe, is also indicated. DGLAP evolution takes us up in Q2 and so the

partonic constituents are resolved more finely. The BFKL equation takes us to small x, with

the gluon density xg growing as x−λ, but the resolution in the transverse plane remaining at

approximately 1/Q. As x decreases, the partonic content increases, and at some stage the

partons recombine (absorptive effects), and eventually saturate.

analyses describe the data satisfactorily in this regime14, it does not mean that the parton

distributions are reliable here. We know pure DGLAP is incomplete at small enough x.

To explore the small x regime, we first note that DGLAP is equivalent to assuming that

the dominant dynamical mechanism leading to DIS scaling violations is the evolution of parton

emissions strongly-ordered in transverse momenta. However, at small x the evolution occurs

over large rapidity intervals (∼ ln1/x). The higher-order corrections to the splitting (and

coefficient) functions contain one additional power of ln1/x for each additional power of αs. If

we keep just the leading ln1/x terms then the small x behaviour of the Pgg splitting function,

for example, has the form

xPgg(x) → A10 αs + A21 α2
sln1/x + A32 α3

sln
21/x + A43 α4

sln
31/x + ... , (86)

14The gluon has a valence-like behaviour, although the uncertainties are large in this domain. Nevertheless

its behaviour is quite different to the growth of the sea-quark distributions as x→ 0. Such a result looks strange

from the Regge viewpoint where the same vacuum singularity (Pomeron) should drive both the sea quarks and

the gluons; i.e. the same small x behaviour is expected for sea quark and gluon distributions.
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whereas in NNLO DGLAP, for example, Pgg contains only the terms up to α3
s. Clearly, at

small x, when αs ln1/x ∼ 1, a resummation of all of the terms in the series is necessary.

The resummation of the leading log (LLx) terms, αn
s logn−11/x, is accomplished by the BFKL

equation15. The BFKL equation [18] will be discussed in detail in the lectures of Victor Fadin

[19], Lev Lipatov [20] and Al Mueller [21]. Here we will just include some introductory remarks.

At low x we have diffusion or “random walk” in the logarithm of transverse momenta as we

proceed along the emission chain. We no longer have the strong ordering in kt which is true

in DGLAP evolution. For this reason the BFKL equation is for the gluon density, f(x, k2
t ),

unintegrated over kt. Recall that the gluon dominates at low x. The BFKL equation has the

structure
∂fg

∂ln(1/x)
= K ⊗ fg = λfg (87)

which, at small x, has the the solution

fg ∼ eλln(1/x) ∼ x−λ ∼
(

s

s0

)λ

, (88)

where λ = 12αsln2/π is the leading eigenvalue of the BFKL kernel K. This has an analogous

form to the Regge-pole exchange behaviour of the amplitude,

A(s, t) ∼
∑

R

βR(t)
(

s

s0

)αR(t)

, (89)

which is the cornerstone of the description of high-energy “soft” hadron-hadron interactions;

αR(t) is the trajectory of Reggeon R in the complex angular momentum plane. For colour-

octet exchange the BFKL equation describes a Reggeized gluon with trajectory αg(t), while for

colour-singlet exchange, which is relevant to this discussion, it leads to a cut in the complex

angular momentum, j, plane corresponding to two Reggeized gluons exchanged – often called

the perturbative Pomeron. Note that the generalized gluon distribution fg corresponds to the

two-gluon exchange amplitude. Its behaviour at low x is driven by the rightmost singularity

(branch point), j = 1+λ, produced by the two-gluon cut, where the value of λ obtained from the

BFKL equation is given above. Since the behaviour of fg is driven by a cut (and not an isolated

pole) in the j-plane, a prefactor 1/
√

lns will appear in (88). The possible connection between

(89) and (88) is indicated by a horizontal ‘block’ arrow in Fig. 19. In the “soft” regime the

hadrons are Reggeized, while in the perturbative QCD BFKL regime the constituent partons

are Reggeized. How to go from one regime to the other has not been solved. For example,

15DGLAP and BFKL are different limits of a more general evolution of parton densities, which is an ordered

evolution in the angles of the emitted partons. At LO we have strong ordering of the emission angles,...θi ≪
θi+1...; on the other hand if, at one step of the evolution θi ∼ θi+1, then this contribution is included inside

the NLO splitting function. In the collinear approximation of DGLAP the angle increases due to the growth

of the transverse momentum kt, while in BFKL the angle (θ ≃ kt/k‖) grows due to the decreasing longitudinal

momentum fraction as we proceed along the emission chain from the proton. Introductory discussions of the

BFKL equation can be found, for example, in Refs.[25, 26].
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what is the relation16 of the BFKL or perturbative QCD ‘Pomeron’ (given by a ladder diagram

formed from the exchange of two t-channel Reggeized gluons) to the ‘Pomeron’ describing soft

high-energy proton-proton interactions?

Coming back to the discussion centred on the perturbative expansion of equation (86),

we note that in the small x region the gluon dominates, and only Pgg and Pqg contain LLx

contributions. These are positive but smaller than naively expected; it turns out that A21 =

A32 = 0, and even A54 = 0, in (86). Now the next-to-leading (NLLx) terms, αn
s logn−21/x, have

also been calculated [23]. These give a large, negative, contribution to the gluon, leading to

instability at small x. In fact λ of (88) is now given by

λ = (12αsln2/π) (1 − 6.5αs). (90)

This problem has been the subject of considerable investigation. Clearly, the higher-order

contributions, NNLLx, NNNLLx,... are important. However it took about 10 years to calculate

the NLLx contributions, so to compute the next order or two appears unrealistic, and even

then may not converge to a stable result. Instead, the procedure that has been followed is to

identify a few physical QCD effects that lead to large higher-order corrections and then to resum

them. Indeed, this all-order resummation of the main effects is found to tame the wild (LLx

→ NLLx) behaviour; a readable review is given in [24]. The approaches of the various groups

have reached similar conclusions: the approximate all-order resummed BFKL framework leads

to the behaviour that

xg ∼ x−0.3 as x → 0 (91)

at low scales17.

In practice, it is found that this power-like growth only sets in at very small x. In terms of

DGLAP evolution all the BFKL effects should be included in the resummed splitting functions

used to describe the transition between two quite different scales, that is between partons whose

transverse momentum are very different. In such a case the power growth (91) will be included

in the resummed Pgg. However the resummed xPgg has a dip centred at x ∼ 10−3, and the

power growth is only evident below x ∼ 10−5. Indeed the resummed xPgg and the NNLO

DGLAP xPgg are in good agreement down to x ∼ 10−3.

To make quantitative predictions in the small x domain, x <∼ 10−4 with Q2 ∼ 2 GeV2, where

no data exist, is extremely difficult. We need to obtain the resummed ln(1/x) solution starting

from some non-perturbative amplitude at Q = Q0. This non-perturbative distribution (which

is analogous to the ‘input’ in the DGLAP approach) is not known theoretically. Either one has

to fit it to data (but again low x data are needed) or to use some phenomenological model (for

example, based on a Regge parametrization).

16See [22] for a phenomenological study.
17What do the data say? If the F2 data are fitted to the form x−λ for x < 0.01, then it is found that λ

grows approximately linearly with logQ2 from λ ≃ 0.1 passing through λ = 0.3 at Q2 ∼ 40 GeV2. The simple

assumption that this reflects the behaviour of the gluon, with F2 driven by the g → qq̄ transition is much too

naive. Indeed the global analyses give a gluon which is valence-like at small x at the input scale.
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We conclude that the parton densities are unknown in the region x <∼ 10−4. At very small

x we have the estimate that gluon density might behave as xg ∼ x−λ with λ ≃ 0.3. However,

as x decreases, at some stage this behaviour will violate unitarity. Here the recombination of

gluons (absorptive effects) come to the rescue, and tame the violations of unitarity. To this we

now turn.

11 Absorptive effects

The saturation of parton densities (λ = 0) may be obtained using the Gribov-Levin-Ryskin

(GLR) equation [27] or the more precise Balitski-Kovchegov (BK) equation [28]. These equa-

tions sum up the set of so-called fan diagrams which describe the rescattering of intermediate

partons on the target nucleon. The screening caused by these rescatterings prohibits the power

growth of the parton densities.

The GLR equation for the gluon may be written in the symbolic form

∂(xg)

∂lnQ2
= Pgg ⊗ g + Pgq ⊗ q − 81α2

s

16R2Q2

∫

dx′

x′
[x′g(x′, Q2)]2. (92)

The non-linear shadowing term, −[g]2, describes the recombination of gluons. It arises from

perturbative QCD diagrams which couple 4g to 2g — that is two gluon ladders recombining

into a single gluon ladder, which is called a fan diagram. The minus sign occurs because

the scattering amplitude corresponding to a gluon ladder is predominantly imaginary. The

parameter R is a measure of the transverse area πR2 where the gluons are concentrated.

The BK equation is an improved version of the GLR equation. It accounts for a more precise

form of the triple-pomeron vertex and can be used for the non-forward amplitude. The GLR

equation, based on DGLAP evolution, was in momentum space; whereas the BK equation,

based on the BFKL equation, is written in coordinate space in terms of the dipole scattering

amplitude N(x,y, Y ) ≡ Nxy(Y ). Here x and y are the transverse coordinates of the two

t-channel gluons which form the colour-singlet dipole, and Y = ln(1/x) is the rapidity. The

BK equation reads

∂Nxy

∂Y
=

3αs

π

∫

d2z

2π

(x − y)2

(x − z)2(y − z)2
{Nxz + Nyz − Nxy − Nxz Nyz} , (93)

where, interestingly, the non-linear and linear terms have the same BFKL kernel K, which is

shown explicitly in (93). For small dipole densities, N , the quadratic term in the brackets may

be neglected, and, indeed, (93) reproduces the conventional BFKL equation. However for large

N , that is N → 1, the r.h.s. of (93) vanishes, and we reach saturation when N = 1. The

equation sums up the set of fan diagrams where at the lower (small Y ) end the target emits

any number of pomerons (i.e. linear BFKL amplitudes), while at the upper (large Y ) end we

have only one BFKL dipole.
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In principle, it would appear more appropriate to use the BFKL-based BK equation to

describe the parton densities at low x. It is an attempt to describe saturation phenomena.

However it is just a model and cannot, at present, be used to reliably estimate absorptive

effects at small x.

Is there any evidence of the onset of absorptive effects in the experimental data? These

should occur first at low x and low Q2, see Fig. 19. However, there is no conclusive evidence that

absorptive effects are important in the HERA data in the perturbative regime, Q2 >∼ 1 GeV2.

The various claims that are frequently made have been recently comprehensively discussed in

[29]. It is seen that none of them, including the observed ‘flat’ ratio of (diffractive DIS/inclusive

DIS) or the observation of geometric scaling, provide any compelling evidence of saturation

effects.

Of course, as x decreases we know that ultimately absorptive effects must be present. In

principle, we should be able to estimate their contribution from knowledge of the structure

functions for diffractive DIS, via

∆F abs
2 ∼ − FD

2 , (94)

where F D
2 is the structure function for the process γ∗p → X + p in which the slightly deflected

proton and the cluster X of outgoing hadrons are well separated in rapidity [30].

12 Conclusions

The great improvement in the precision and range of deep inelastic and related hard scat-

tering data over the last few years has enabled the partonic structure of the proton to be

well determined in the 10−3 <∼ x <∼ 0.5 interval, so we are able to make reliable predictions for

the production of new massive states at the LHC. Global analyses are now available at NNLO.

These analyses require particularly careful treatment at the heavy quark thresholds, see Thorne

[12] and references therein. A surprise is that a pure DGLAP description is able to describe

all features of the data down to Q2 = 2 GeV2, in spite of the fact that the global fits are now

quite tightly constrained. The allowance of beyond-DGLAP effects is not found to improve the

description, see, for example [13].

Another surprise is that the global analyses reveal that the gluon has a valence-like small

x behaviour at the low input scale, unlike the sea quark distribution which behaves as ex-

pected, see (83). Such a result looks strange from the Regge viewpoint where the same vacuum

singularity (Pomeron) should drive both the sea quarks and the gluons; i.e. the same power

λg = λsea is expected for sea quarks and gluons. Note that global analyses are only reliable

down to x ∼ 10−3.

The low x domain, x <∼ 10−4, is unchartered territory. Is it possible for the LHC experiments

to determine the behaviour of partons in the important low x region below 10−4 at low scales?

One possibility is µ+µ− Drell-Yan production in which events are observed with the µ+µ−
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invariant mass as low as possible and the rapidity as large as possible. For example, for

Mµµ = 4 GeV and yµµ = 3, we sample quarks at x = 1.4 × 10−5, see Fig. 16. This process

samples predominantly the sea quark distributions. To study the small x behaviour of the

gluon at low scales we may consider χc production18, or prompt photon production driven by

the subprocess gq → γq, or perhaps gg → bb̄. These studies may also require an improvement

in theoretical formalism.
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